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Abstract:

Introduction: This paper introduces a novel collaborative filtering recommender system designed to optimize work
schedule assignments for Straddle Carrier (SC) drivers at container terminals. The proposed Straddle Carrier
Assignment Model (SAM) addresses critical operational challenges by integrating multi-dimensional rating matrices
with seniority-based similarity metrics to create an intelligent scheduling system that balances operational efficiency
with workforce satisfaction.

Methods: The system was implemented at the RADES container terminal using a three-tier architecture that
incorporates real-time feedback mechanisms and an intelligent scoring algorithm that dynamically adapts to
changing operational conditions. The mathematical framework combines collaborative filtering with domain-specific
constraints through hybrid similarity computation, dynamic neighbor selection, and constrained optimization
algorithms.

Results: The implementation demonstrated significant operational improvements, including a 93% reduction in
schedule response time, a 64% decrease in assignment disputes, and a 31% increase in container handling efficiency,
over a 24-month evaluation period. The system achieved 99.9% uptime, with a 28% improvement in resource
utilization and an 85% positive driver satisfaction rating.

Discussion: SAM's innovative approach represents a significant advancement over traditional rule-based scheduling
methods by introducing machine learning techniques to the maritime logistics domain. The mathematical framework
combines collaborative filtering with domain-specific constraints to produce schedules that optimize both terminal
productivity and driver satisfaction.

Conclusion: By addressing the fundamental challenges of schedule optimization in container terminals, this research
provides both theoretical contributions to recommender systems and practical value to maritime logistics operations.

Keywords: Collaborative filtering, Work schedule optimization, Straddle carrier drivers, Recommender system,
Container terminals, Maritime logistics, Conflict resolution.
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1. INTRODUCTION

Efficient transportation operations are crucial for the
functioning of container terminals, as the timely movement
of cargo has a direct impact on global supply chains. Stra-
ddle carriers (SCs) play a central role in this process,
serving as the backbone of terminal logistics. Despite tech-
nological advancements in maritime operations, container
terminals face increasing pressure to optimize their opera-
tions while managing complex scheduling challenges and
maintaining workforce satisfaction.

The maritime transportation sector has witnessed signi-
ficant technological evolution; yet, the fundamental chal-
lenge of assigning optimal work schedules remains inade-
quately addressed. Current practices often rely on manual
scheduling processes that lead to operational inefficiencies,
worker dissatisfaction, and reduced terminal productivity.
These challenges are particularly evident in the allocation
of straddle carrier drivers, where traditional scheduling
methods fail to account for both operational requirements
and driver preferences.

At the RADES container terminal in Tunisia—a signi-
ficant hub for container movement across Africa—these
challenges manifest in three critical areas. First, the man-
ual scheduling process results in significant delays and
inconsistent workload distribution, with an average sched-
uling time of 45 minutes per assignment and workload
variations of up to 40% between drivers. Second, the lack of
systematic performance monitoring leads to quality control
issues, with 35% of assignments requiring mid-shift adjust-
ments due to inadequate initial allocation. Third, driver
satisfaction surveys indicate that 68% of operators perceive
bias in schedule assignments, resulting in increased turn-
over rates and reduced operational efficiency.

These operational inefficiencies translate into a signifi-
cant economic impact. Industry reports indicate that con-
tainer terminals lose approximately 12-15% of their poten-
tial throughput capacity due to suboptimal scheduling
practices, equivalent to millions of dollars in annual reve-
nue for medium- to large-sized terminals. Additionally,
driver turnover related to scheduling dissatisfaction costs
terminals an average of $15,000 to $25,000 per replace-
ment, considering recruitment, training, and productivity
losses during transition periods.

1.1. Literature Background and Current State of the
Art

Recent developments in recommender systems and
transportation management have opened new avenues for
addressing these challenges. Modern recommender systems
have evolved beyond consumer applications to complex
operational environments where multiple constraints must
be satisfied simultaneously [1]. The integration of contex-
tual factors and fairness considerations has become increa-
singly important, particularly in workforce applications
where bias concerns significantly impact human resource
allocation [2].

In transportation management, hybrid optimization
algorithms have demonstrated effectiveness in addressing
complex constraints inherent in transportation operations
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[3]. However, these approaches often lack the adaptability
required for dynamic operational environments. Recent re-
search has explored the application of collaborative filtering
techniques in operational contexts [4, 5], though integration
with domain-specific constraints remains limited.

Within container terminal operations specifically, rese-
arch has increasingly focused on optimizing various opera-
tional aspects through advanced computational techniques
[6, 7]. Studies have demonstrated the potential for signi-
ficant efficiency improvements through intelligent resource
allocation; however, the human factors dimension receives
insufficient attention in many theoretical models, thereby
undermining their practical utility [8].

1.2. Research Gap and Problem Statement

While existing literature has made significant strides in
both recommender systems and transportation manage-
ment, several critical gaps remain that limit practical imple-
mentation in container terminal environments:

1.2.1. Integration Gap

Previous works largely treat scheduling and recom-
mendation systems as separate concerns, failing to leverage
the potential of recommender systems in addressing the
complex human factors inherent in driver scheduling. Most
existing solutions focus either on pure optimization without
considering user preferences or on recommendations with-
out operational constraints.

1.2.2. Feedback Loop Challenge

Current systems often lack real-time performance
feedback mechanisms, which restricts their ability to adapt
to changing operational conditions. This limitation prevents
continuous improvement and responsiveness to dynamic
terminal environments.

1.2.3. Scalability Limitations

Many current solutions focus on single-terminal imple-
mentations with limited scope, restricting their practical
utility for enterprise-level deployment. The lack of scalable
architectures limits widespread adoption across multiple
operational contexts.

1.2.4. Human Factors Deficit

The human element of terminal operations receives in-
sufficient attention in many theoretical models. Existing
approaches often assume trade-offs between efficiency and
fairness, without exploring synergistic relationships between
these dimensions.

1.3. Research Objectives and Contribution

This research addresses these challenges through the
development and implementation of an innovative collabo-
rative filtering recommender system that transforms tradi-
tional scheduling approaches through intelligent auto-
mation and data-driven decision-making. The primary
research objectives are to:

e Develop a mathematical framework that integrates colla-
borative filtering techniques with domain-specific opera-
tional constraints in maritime logistics
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e Design and implement a scalable system architecture that
enables real-time optimization in dynamic terminal envi-
ronments

e Validate the approach through a comprehensive empirical
evaluation in a real-world container terminal

e Demonstrate that fairness and efficiency can be simulta-
neously optimized rather than traded off against each
other

Our research makes several novel contributions to both
academic literature and industry practice:

1.3.1. Algorithmic Innovation

The study introduces a hybrid similarity metric that
combines rating-based and seniority-based parameters, spe-
cifically designed to address the unique challenges of con-
tainer terminal operations. This approach enables the
consideration of both current performance and experience
levels in assignment decisions.

1.3.2. Dynamic Optimization

The proposed system incorporates a real-time feedback
mechanism that continuously adapts scheduling parameters
based on operational outcomes, reducing average response
time from 45 minutes to 3 minutes while maintaining
assignment quality.

1.3.3. Fair Resource Allocation

A sophisticated scoring algorithm has been developed
that ensures an equitable distribution of workload, consi-
dering driver preferences and skill levels, while improving
resource utilization by 28% and maintaining high driver
satisfaction.

1.3.4. Empirical Validation

Through extensive implementation at the RADES ter-
minal over 24 months, the study provides quantitative evi-
dence of operational improvements, including a 64% reduc-
tion in assignment disputes, a 28% increase in schedule
adherence, and a 31% improvement in container handling
efficiency.

1.3.5. Methodological Framework

A comprehensive implementation methodology is estab-
lished that successfully navigates organizational change
management while achieving technical objectives, providing
a replicable approach for similar deployments.

1.4. Study Scope and Significance

This study focuses on optimizing work schedule assign-
ments for straddle carrier drivers at container terminals,
with implementation and validation conducted at the
RADES container terminal in Tunisia. The research add-
resses both technical challenges in algorithm development
and practical challenges in organizational implementation,
providing insights relevant to both academic researchers
and industry practitioners.

The significance of this work extends beyond immediate
operational improvements. By demonstrating that collabo-
rative filtering techniques can be successfully integrated
with operational constraints in industrial settings, this

research opens new possibilities for intelligent automation
across transportation and logistics domains. The synergistic
relationship between fairness and efficiency observed in our
implementation challenges conventional assumptions about
trade-offs in operational optimization.

1.5. Paper Organization

The remainder of this paper is structured according to
the standard journal format, as follows: Section 2 presents
the materials and methods, including a comprehensive lite-
rature review, system design and architecture, implemen-
tation methodology, and experimental setup. Section 3
presents the results of our 24-month empirical evaluation,
including operational performance metrics, system perfor-
mance analysis, user adoption patterns, and long-term
impact assessment. Section 4 provides a comprehensive dis-
cussion of our findings, comparison with existing appro-
aches, study limitations, and practical implications. Finally,
Section 5 concludes the paper with a summary of contri-
butions, broader implications, and future research
directions.

2. MATERIALS AND METHODS

2.1. Literature Review and Theoretical Framework

This section presents a comprehensive review of rele-
vant literature across three interconnected domains that
form the theoretical foundation for our proposed approach:
recommender systems, transportation management, and
container terminal operations.

2.1.1. Advances in Recommender Systems

Recommender systems have undergone substantial evo-
lution in recent years, with several developments parti-
cularly relevant to operational environments. While tradi-
tional recommender systems focused primarily on consumer
preferences, recent advances have expanded their appli-
cation to complex operational settings where multiple cons-
traints must be satisfied simultaneously.

The integration of contextual factors represents a signi-
ficant advancement in recommendation algorithms. Chen
et al. [1] demonstrated how causal inference techniques
enable systems to understand fundamental relationships
between user preferences and recommended items, leading
to more robust recommendations in dynamic environments.
This approach is particularly valuable for operational set-
tings where multiple factors influence scheduling outcomes.
Their work on causal graph modeling provides critical
insights for our development of multi-factor scoring algo-
rithms.

Fairness considerations have become increasingly im-
portant in recommender systems, particularly in workforce
applications. Wang et al. [2] established comprehensive
frameworks for measuring and ensuring equitable recom-
mendations, addressing concerns about bias that often arise
in human resource allocation. Their development of the Gini
coefficient-based fairness metric provides a foundation for
our approach to workload distribution. The equity-efficiency
balance they describe directly informed our hybrid scoring
mechanism.
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Hybrid recommendation approaches have shown pro-
mise in complex operational environments. Kuo and Li [4]
demonstrated the effectiveness of particle swarm optimi-
zation in collaborative filtering, achieving superior perfor-
mance in high-dimensional decision spaces. Their particle-
based optimization approach, while computationally inten-
sive, established important benchmarks for algorithm
performance in multi-constraint environments. Venkatesan
[9] further advanced this direction through matrix factori-
zation techniques, providing efficient dimensionality reduc-
tion methods that maintain recommendation quality.

Modern recommender systems increasingly incorporate
adaptive learning capabilities. Nguyen et al. [5] introduced
an adaptive KNN-based collaborative filtering approach
that dynamically adjusts similarity metrics based on user
feedback. Their methodology for threshold adjustment
directly informed our dynamic parameter tuning mecha-
nisms. Similarly, Widayanti et al. [10] demonstrated the
effectiveness of hybrid techniques that combine collabo-
rative filtering with content-based approaches, establishing
performance benchmarks for multimodal recommendation
systems.

The evolution toward fairness-aware recommendation
systems represents a critical development for workforce
applications. Recent research by Ma et al. [11] provided
comprehensive surveys on fairness in recommender sys-
tems, establishing theoretical frameworks for measuring
and ensuring equitable outcomes. Their work on algori-
thmic fairness directly influenced our approach to bal-
ancing efficiency and equity in driver assignments.

2.1.2. Transportation Management Systems

Transportation management has witnessed significant
advancements in optimization techniques applicable to
scheduling problems. Recent research has focused on add-
ressing the complex constraints inherent in transportation
operations while maintaining computational efficiency.

Ammann et al. [3] introduced hybrid optimization algo-
rithms for driver routing in long-distance networks, demon-
strating how specialized constraints in transportation
domains require tailored algorithmic approaches. Their
work on synchronization constraints has direct relevance
for terminal operations where multiple resources must coor-
dinate effectively. The three-phase optimization approach
they developed informed our constraint handling methodo-
logy, although their focus on route optimization differs from
our emphasis on schedule generation.

In resource allocation contexts, Ibrahim et al. [12] deve-
loped specialized recommendation systems for electric
vehicle charging stations, demonstrating how domain-
specific constraints can be effectively incorporated into rec-
ommendation frameworks. Their integration of restricted
Boltzmann machine techniques with operational constraints
provides a useful parallel to our approach to container
terminals. The multi-objective optimization framework they
established offers valuable insights into balancing compe-
ting operational objectives.

Recent research by Wang et al. [13] on container
drayage with flexible assignment of work breaks for vehicle
drivers addresses related challenges in driver scheduling.
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Their emphasis on managing driver rest periods and work
patterns complements our focus on comprehensive sche-
dule optimization. Their mathematical formulation for the
break assignment provided important insights for our cons-
traint handling approach, though their focus on singular
drivers differs from our multi-driver optimization frame-
work.

The combination of real-time optimization with opera-
tional constraints represents a particular challenge in
transportation management. Tan et al. [14] addressed this
through their enhanced adaptive large neighborhood search
for electric vehicle routing, incorporating driver hetero-
geneity into the optimization framework. Their approach to
modeling driver differences directly informed our similarity
computation methodology; however, their application to
electric vehicle routing presents different operational cons-
traints than those found in container terminals.

Advanced approaches to driver scheduling have emerged
in various transportation contexts. Nourmohammadzadeh
and Vol$ [15] developed matheuristic approaches for robust
bus driver rostering with uncertain daily working hours,
demonstrating the importance of handling uncertainty in
workforce scheduling. Their robustness considerations
influenced our approach to dynamic threshold adjustment,
although their focus on bus operations differs from the
requirements of container terminals.

2.1.3. Container Terminal Operations

Within container terminals specifically, research has inc-
reasingly focused on optimizing various operational aspects
through advanced computational techniques. Recent studies
have demonstrated the potential for significant efficiency
improvements through intelligent resource allocation.

Raeesi et al. [6] highlighted the synergistic effect of ope-
rational research and big data analytics in enhancing ter-
minal efficiency while maintaining environmental sustain-
ability. Their comprehensive review establishes the theore-
tical foundation for data-driven decision-making in terminal
operations. The taxonomy of optimization techniques they
developed informed our methodological positioning, though
their broader focus extends beyond our specific scheduling
application.

Aslam et al. [7] further demonstrated the potential of
computational intelligence in optimizing marine container
terminal operations by reviewing machine learning appli-
cations across various terminal processes. Their work
confirms the emerging trend toward intelligent automation
in maritime logistics while identifying scheduling as an area
with significant opportunity for innovation. The perfor-
mance metrics they established provided benchmarks for
our system evaluation, though their survey approach lacks
the implementation depth of our study.

Recent research by Gao and Ge [16] on integrated sche-
duling of yard cranes, external trucks, and internal trucks
addresses related challenges in terminal resource allo-
cation. While their work focuses on equipment scheduling
rather than human resources, it demonstrates the impor-
tance of integrated approaches to terminal optimization.
Their constrained optimization framework informed aspects
of our mathematical model, though their emphasis on
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equipment coordination differs from our focus on driver
scheduling.

Human factors in container terminal operations have
received less attention in the literature, but they represent
a critical dimension of operational efficiency. Hong et al. [8]
explored the integrated scheduling optimization for con-
tainer handling using driverless electric trucks, highlighting
the changing nature of human-machine interaction in ter-
minal environments. Their findings on workload distribution
informed our approach to assignment fairness, though their
focus on autonomous systems presents different operational
constraints than human-operated straddle carriers.

Recent developments in container terminal optimization
have emphasized the integration of multiple operational
dimensions. Weerasinghe et al. [17] provided a systematic
review of operations research applications in container
terminal operations, identifying key optimization opportu-
nities across various terminal processes. Their work estab-
lished the broader context for our specific focus on driver
scheduling, while highlighting the importance of human
resource optimization in overall terminal performance.

2.1.4. Theoretical Framework Integration

The convergence of these three research domains
provides the theoretical foundation for our Straddle Carrier
Assignment Model (SAM). The integration of collaborative
filtering techniques from recommender systems research
with the operational constraints identified in transportation
management and container terminal literature creates a
novel approach to workforce scheduling optimization.

Key theoretical principles underlying our approach
include:

2.1.4.1. Collaborative Intelligence

Drawing from recommender systems research, we apply
collaborative filtering techniques to identify patterns in
driver preferences and performance, enabling intelligent
assignment decisions based on historical data and peer
similarity.

2.1.4.2. Constraint Integration

Following transportation management principles, we
incorporate operational constraints specific to container
terminal environments, ensuring that recommendations
remain feasible and align with operational requirements.

2.1.4.3. Human-Centric Optimization

Building container terminal operations research, we
explicitly consider human factors in optimization decisions,
recognizing that driver satisfaction and operational effi-
ciency can be synergistically optimized rather than traded
off against each other.

2.1.4.4. Adaptive Learning

Incorporating insights from modern recommender
systems, we implement dynamic parameter adjustment
mechanisms that enable continuous system improvement
based on operational feedback.

This theoretical integration addresses the research gaps
identified in Section 1.2 by combining the strengths of each

domain while mitigating their individual limitations. The
resulting framework provides both theoretical rigor and
practical applicability for real-world container terminal
environments.

2.2. System Design and Architecture

The maritime transportation sector is undergoing sig-
nificant transformation as terminals seek to optimize opera-
tions through intelligent automation. Our research intro-
duces a novel methodology to address the pressing chal-
lenges of work schedule optimization in container terminals
through the Straddle Carrier Assignment Model (SAM). This
section presents the comprehensive system architecture
and details the mathematical framework underlying our
approach.

2.2.1. System Architecture Overview

The SAM system operates through a three-tier archi-
tecture, with each layer performing specific functions in the
recommendation process. Fig. (1) illustrates the compre-
hensive workflow of the system, showing the intercon-
nections between its three main components.

2.2.2. Input Layer

The input layer captures and processes three primary
data sources:

2.2.2.1. Driver Profiles

This component maintains comprehensive information
about each driver, including experience level, performance
history, specialization areas, and work preferences. The
system tracks both quantitative metrics (e.g., years of expe-
rience, error rates) and qualitative indicators (e.g., pre-
ferred work periods, proficiency with specialized equip-
ment).

2.2.2.2, Historical Data

The historical database maintains records of past sche-
dule assignments, performance ratings, conflict incidents,
and resolution outcomes. This longitudinal data enables the
system to identify patterns and trends in driver perfor-
mance and satisfaction.

2.2.2.3. Real-time Preferences

This component captures current driver status and
preferences, including availability, schedule constraints,
and recent performance metrics. The real-time nature of
this data allows the system to adapt to changing operational
conditions.

2.2.3. Recommendation Engine

The recommendation engine forms the core of the SAM
system, implementing three key modules:

2.2.3.1. Collaborative Filtering Module

This component constructs driver similarity matrices
using a modified Pearson correlation coefficient, generates
rating predictions for potential assignments, and selects
optimal neighbor groups for recommendations. The module
implements our hybrid similarity metric that combines both
rating-based and seniority-based similarities.
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Input Layer

Recommendation Engine

Collaborative Filtering

* Driver Similarity Matrix
» Rating Predictions
* Neighbor Selection

Seniority Analysis

» Experience Weights
» Historical Performance
« Skill Assessment

Schedule Optimization

* Workload Balancing
« Conflict Resolution

* Performance Scoring
+ Real-time Adjustments

\

Output Layer

Fig. (1). Three-tier architecture of the straddle carrier assignment model (SAM).

2.2.3.2. Seniority Analysis

The seniority module calculates experience-based
weights, evaluates historical performance patterns, and ass-
esses skill levels and specializations to inform decisions.
This component ensures that driver experience and exper-
tise are appropriately factored into assignment decisions.

2.2.3.3. Schedule Optimization

This module balances workloads across available
drivers, implements conflict resolution algorithms, calcu-
lates and updates performance scores, and makes real-time
adjustments based on feedback. It solves a constrained
optimization problem to maximize overall satisfaction while
meeting operational requirements.

2.2.4. Output Layer

The output layer generates and delivers three key
outputs:

2.2.4.1. Optimized Work Schedules

The system produces personalized driver assignments
with balanced workload distribution and minimized con-
flicts. These schedules are delivered through both static
reports and dynamic interfaces.

2.2.4.2. Performance Metrics

The system generates individual driver scores, system
efficiency indicators, and conflict resolution rates. These
metrics provide transparency into the assignment process
and support continuous improvement.
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2.2.4.3. Satisfaction Indicators

The system tracks driver satisfaction metrics, integrates
customer feedback, and measures operational efficiency to
ensure optimal performance. These indicators help terminal
management assess the overall effectiveness of the
scheduling system.

2.2.5. Mathematical Framework

The SAM system introduces several innovative mathe-
matical components that enable intelligent optimization of
work schedules. The following subsections detail the core
mathematical formulations and algorithms.

2.2.6. Limitations and Contextual Applicability of
Seniority-Based Similarity Measures

While our hybrid similarity metrics provide significant
advantages in the container terminal context, several limi-
tations must be acknowledged. First, seniority-based mea-
sures assume a correlation between experience and perfor-
mance, which may not hold in terminals with rapid techno-
logical changes or inadequate training programs. Second,
these measures could potentially reinforce existing biases if
historical performance data reflects systemic inequities
rather than actual differences in capability.

The applicability of these assumptions varies across
operational contexts. In highly standardized terminals with
established equipment, seniority metrics strongly correlate
with performance efficiency. However, in terminals under-
going technological transitions or employing diverse equip-
ment types, the correlation becomes significantly weaker.
Our implementation at RADES confirmed the validity of
seniority correlation through statistical analysis (r = 0.78, p
< 0.001); however, this finding should be independently
verified in other operational environments.

Adjustment mechanisms for these assumptions include:

e Regular validation through performance correlation
analysis

e Dynamic weighting based on equipment type and
operational zone

e Periodic recalibration based on changing operational
conditions

2.2.7. Driver Similarity Computation

The system employs a hybrid similarity metric that com-
bines both rating-based and seniority-based similarities:

Rating-based similarity between drivers u and v is com-
puted using a modified Pearson correlation coefficient as
shown in Eq. (1):

Simeg,, (U, V) = cos(u,v)

u
.

<

9]

Z(ru,i _E)X@,i _Fv)
\/Z‘(r“ﬂ )’ X\/Z(rv,i Ty

@

Where:

e r,; = The rating given by driver u for work schedule i

e r,; = The rating given by driver v for work schedule i

o E = The mean rating for driver u across all work
schedules

o E = The mean rating for driver v across all work
schedules

Seniority-based similarity incorporates experience levels
according to Eq. (2):

exp, — exp
Sen(u’v)=1_|rnuax—\l| )

exp

Sim
Where:

e exp, = Driver u's experience level

e exp, = Driver v's experience level

® max,, = Maximum experience level in the system used
for normalization

e |exp, - exp,| = Absolute difference between the expe-
rience levels of drivers u and v

The combined similarity is computed as a weighted
average using Eq. (3):
. a-Sim,_ (u,v)+ B-Sim._(u,v
SIm(U,V)Z Rat( ) ﬂ Sen( ) 3)

a+pf

Where:

e o and B are configurable weights determining the relative
importance of each component

e The denominator ensures normalization of the combined
similarity score

2.2.7.1. Neighbor Selection Algorithm

Our system introduces a dynamic neighbor selection
mechanism defined by Eq. (4):

Nu =v| Sim(u,v) > yAl expu—exp,l< @ ()

Where:

o l\]u = Set of drivers v considered as “neighbors” for
driver u

e y = Similarity threshold (dynamically adjusted)

e 0 = Experience gap tolerance

e Sim(u, v) = Combined similarity score between drivers u
and v

e |exp,-exp,| = Absolute difference in experience levels

This mechanism ensures that only sufficiently similar
drivers with comparable experience levels are selected as
neighbors for recommendation purposes, as expressed in
Eq. (4).

2.2.7.2. Driver Score Computation

The final driver's score incorporates multiple factors
according to Eq. (5):
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r*+Sen. .
4 ——+ ifPres, =1
1- Del G)

0 otherwise

Score! =

Where:

rut = Normalized rating of driver u at time ¢
Sen. = Seniority factor of driver u at time ¢
Del; = Delays caused by driver u at time ¢
Presl‘J = Binary indicator of driver presence at time t

This scoring function, as defined in Eq. (5), balances
performance quality with experience while penalizing
delays. It ensures that only active drivers receive scores,
preventing assignments to unavailable personnel.

2.2.7.3. Schedule Assignment Optimization

The system optimizes assignments using a constrained
satisfaction approach. The objective function is formulated
in Eq. (6):

Maximize > " x, - Score,

uel seS

(6)

Where:

® X, = Binary decision variable (1 if driver u is assigned to
task s, 0 otherwise)

e Score! = Score of driver u at time t

e U = Set of all drivers

e S = Set of all tasks

The optimization problem defined in Eq. (6) is subject to
three critical constraints:

Workload balance constraints as expressed in Eq. (7):

D X <W_., VueU

seS

7

Where W, is the maximum allowable workload for
any driver.

Skill compatibility constraints defined by Eq. (8):
X, <Comp,,VueU,seS ®)

us —

Where Comp,, is a binary compatibility indicator (1 if
driver u is qualified for task s, 0 otherwise).
Task coverage constraints as shown in Eq. (9):
D> X, =1 VseS ©
ueU
This constraint ensures that each task is assigned to
exactly one driver.

2.2.7.4. Dynamic Adjustment Mechanism

The system incorporates real-time feedback through a
dynamic adjustment factor formulated in Eq. (10):

7/t:7t—1+77'Apen‘ (10)
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Where:
e y, = Updated similarity threshold at time ¢
e ., = Similarity threshold from the previous time step
e 1 = Learning rate controlling the magnitude of updates
e A, = Observed change in performance metrics

This dynamic adjustment mechanism, as expressed in
Eq. (10), enables the system to adapt to changing opera-
tional conditions, automatically tuning the threshold para-
meter based on performance feedback.

2.2.8. Algorithm Implementation

The SAM system implements the mathematical compo-
nents described in Egs. (1-10) through a set of algorithms
designed for efficiency and scalability. Algorithm 1 pre-
sents the pseudocode for the core schedule generation
process.

Algorithm 1: Schedule Generation Process
Input:

* D: Set of drivers

¢ T: Set of tasks

* P: Set of driver profiles

* H: Historical performance data

* R: Real-time preferences

Output:

* S: Optimized schedule assignments

: function GENERATE SCHEDULE (D, T, P, H, R)
: // Compute similarity matrix

: SIM « empty similarity matrix of size |[D| x |D|

: for each pair of drivers (u, v) in D do

: sim rat < compute rating similarity(u, v, H)

: sim_sen « compute seniority similarity(u, v, P)
: SIM [u, v] < combine similarities(sim rat, sim _sen, a, 8)
: end for

© O NOU R WN e

: // Select neighbors for each driver

: N < empty neighbor map

: for each driver u in D do

: N[u] « {v | SIM [u, v] >y A |P[u].exp - P[v].exp| < 6}
: end for

_ =
= O

e N e e
DU W N

: // Compute scores for each driver
: SCORES « empty score map

_ =
co 3

: for each driver u in D do

—_
©

: if R[u].present then

: norm rating < normalize rating(H[u])

: seniority < compute seniority factor(P[u])

: delay < compute delay factor(H[ul)

: SCORES[u] «+ (norm rating + seniority) / (1 - delay)
: else

NN DN NN
B W N = O
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25: SCORES[u] < 0

26: end if

27: end for

28:

29: // Solve assignment optimization problem

30: S < solve assignment problem(D, T, SCORES, R, P)
31:

32: // Update similarity threshold based on performance
33: perf delta < evaluate performance change(S, H)
34:y « vy + n *perf delta

35: return S

36: end function

The algorithm implements the complete workflow of the
SAM system, from similarity computation through neighbor
selection, score calculation, and finally, schedule optimi-
zation. The dynamic threshold adjustment is performed
after scheduled generation, enabling continuous system
improvement.

2.2.9. Parameter Selection and Sensitivity Analysis

The key parameters in our model (a, B, y, and 8) were
determined through a systematic optimization process
using historical data from the RADES terminal. Initial para-
meter ranges were established through consultation with
domain experts, followed by a grid search optimization to
identify the optimal values.

The weighting parameters o and B (controlling for
rating-based vs. seniority-based similarity) were initially set
to a = 0.6 and B = 0.4, reflecting the relative importance of
current performance over experience in this terminal
context. Sensitivity analysis revealed that schedule optimi-
zation remains stable within ranges of a (0.5-0.7) and f
(0.3-0.5), with performance degradation outside these
ranges.

The similarity threshold y was initialized at 0.65 based
on cluster analysis of historical driver performance pat-
terns, with a dynamic adjustment mechanism allowing
adaptations within the range of 0.55-0.75, depending on
operational feedback. Analysis showed that values below
0.55 introduced excessive variability in recommendations,
while values above 0.75 created overly restrictive neighbor
selections.

The experience gap tolerance 6 was set to 3 years,
determined through analysis of skill acquisition patterns at
RADES. This parameter should be adjusted based on the
specific training program structure and skill development
timeline of the implementing terminal. Our sensitivity ana-
lysis revealed that optimal performance occurred between 2
and 4 years, with diminishing returns beyond this range.

Terminal operators implementing this system should
calibrate these parameters based on their specific opera-
tional characteristics, considering:

o Workforce composition and experience distribution
e Typical skill acquisition timelines
e Equipment complexity and variety

e Operational priorities regarding efficiency vs. equitable
distribution

2.2.10. System Innovation and Contributions

The SAM system introduces several innovative aspects
that differentiate it from existing approaches:
2.2.10.1. Integration of Domain-Specific Constraints

Unlike generic recommender systems, SAM incorpo-
rates operational constraints specific to container termi-
nals, enabling practical application in real-world settings.

2.2.10.2. Dynamic Threshold Adjustment

The system's ability to automatically tune similarity
thresholds based on performance feedback represents a
significant advancement over static scheduling approaches.

2.2.10.3. Multi-Factor Similarity Computation

The hybrid similarity metric combines both perfor-
mance-based and experience-based factors, providing a
more comprehensive evaluation of driver compatibility.

2.2.10.4. Real-Time Optimization Capabilities

SAM's architecture supports continuous adaptation to
changing operational conditions, enabling responsive sche-
dule adjustments as circumstances evolve.

These innovations enable the system to address the
complex challenges of work schedule optimization in con-
tainer terminals, as demonstrated by the implementation
results presented in subsequent sections. Unlike the cons-
trained optimization approach of Wang et al. [13], which
maintains static parameters throughout operation, SAM's
dynamic threshold adjustment allows continuous perfor-
mance improvement without manual intervention. Similarly,
while Ibrahim et al. [12] proposed adaptive learning within
a reinforcement learning framework, their approach lacks
the integration of domain-specific constraints that SAM
incorporates to ensure operational feasibility in maritime
logistics environments.

2.2.11. Implementation Methodology

The SAM implementation follows a structured three-tier
architecture approach designed to ensure technical reli-
ability and organizational adoption. This section outlines the
key implementation components, deployment strategy, and
methodological approach used at the RADES container
terminal.

2.2.12. System Architecture Implementation

The SAM system employs a modular three-tier archi-
tecture optimized for real-time performance in container
terminal environments:

2.2.12.1. Client Tier

Web-based interfaces developed using Microsoft Visual
Studio .NET provide role-specific access for drivers, super-
visors, and administrators. The responsive design ensures
accessibility across both fixed terminals and mobile devices
throughout the terminal complex.
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2.2.12.2. Application Server Tier

The core recommendation engine implements the
mathematical framework from Egs. (1-10) using Java
Enterprise Edition for robust performance. Key components
include the request processor, the recommendation engine
executing similarity computations (Egs. 1-3), the optimi-
zation solver implementing constraints (Egs. 6-9), and the
real-time monitor applying dynamic adjustments (Eq. 10).
Python components utilize scientific computing libraries for
specialized optimization tasks.

2.2.12.3. Database Tier

MySQL database with optimized indexing strategies
manages driver profiles, historical performance data, real-
time operational data, and system configuration parame-
ters. The architecture supports both rapid similarity compu-
tations and efficient analysis of historical data.

2.2.13. Key Component Implementation

2.2.13.1. Similarity Computation Module

Implements the hybrid similarity metrics (Eqgs. 1-3) with
sparse matrix representation and parallel processing capa-
bilities. Performance testing validated sub-second compu-
tation times for similarity matrices involving up to 500
drivers.

2.2.13.2. Schedule Generation Module

Executes the constrained optimization framework
(Egs. 6-9) using CPLEX optimizer with dynamic constraint
generation. The module achieves sub-minute optimization
times for daily scheduling involving up to 100 drivers and
200 tasks.

2.2.13.3. Performance Monitoring Module

Tracks operational metrics and implements the dynamic
adjustment mechanism (Eq. 10) through real-time data
collection, feedback processing, and automated threshold
optimization.

2.2.14. Deployment Strategy

The implementation followed a systematic four-phase
deployment approach to minimize operational risk:
2.2.14.1. Phase 1 - Pilot (Months 1-3)

Limited deployment with 25 drivers and 2 supervisors
focusing on core functionality validation and initial para-
meter tuning using the framework from Section 2.2.4.

2.2.14.2. Phase 2 - Controlled Expansion (Months
4-6

Extended to 100 drivers with full supervisor integration,
implementing advanced features while maintaining parallel
operation with existing systems.

2.2.14.3. Phase 3 - Full Deployment (Months 7-12)

Complete rollout to all 250 drivers, transitioning to pri-
mary system status while maintaining fallback capabilities.
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2.2.14.4. Phase 4 - Optimization (Months 13-24)

Continuous refinement based on operational feedback,
implementing dynamic adjustment mechanisms, and para-
meter optimization based on accumulated performance
data.

2.2.15. Integration and Quality Assurance

2.2.15.1. System Integration

Database integration achieved 99.7% data consistency
across operational systems through ETL processes, real-
time synchronization protocols, and automated backup pro-
cedures. User interface deployment included strategic ter-
minal placement, mobile integration, and role-based access
control, achieving 92% user satisfaction ratings.

2.2.15.2. Technical Challenges and Solutions

Key challenges addressed included real-time perfor-
mance requirements (solved through distributed computing
and caching strategies), data consistency management
(addressed via transaction management with optimistic
locking), and system scalability (resolved through horizontal
scaling and database sharding).

2.2.15.3. Quality Assurance

Comprehensive testing methodology included unit tes-
ting of mathematical components, integration testing of the
complete workflow, performance testing under peak loads,
and user acceptance testing. The approach achieved 98.5%
code coverage and validated system performance under
operational conditions.

2.3. Experimental Setup and Evaluation Framework

This section presents the experimental design, statis-
tical methodology, and evaluation framework used to vali-
date the effectiveness of the SAM system during its 24-
month implementation at the RADES container terminal.

2.3.1. Study Design and Population

The experimental validation was conducted at the
RADES container terminal in Tunisia, involving the comp-
lete population of 250 straddle carrier drivers across three
operational shifts. The terminal operates 24/7, with an
annual throughput of 1.2 million TEUs, providing realistic
operational conditions for system validation.

For statistical validity, a power analysis was conducted
with an anticipated effect size of 0.3, a significance level of
a = 0.05, and a desired power of 0.95. The sample size was
calculated using Eq. (11):

N (Z,, +Zﬂ)2 20?2

52
Where Z,,=1.96, Z,=1.645, yielding a minimum
required sample size of 147 drivers. Our inclusion of 250
drivers exceeded this requirement by 70%, ensuring ade-
quate statistical power. The 24-month evaluation encom-

passed over 62,000 individual assignments, providing suf-
ficient temporal resolution for trend analysis.

11)
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2.3.2. Data Collection and Statistical Analysis

2.3.2.1. Data Collection Methods

A multi-source approach included automated system
logs for technical metrics, quarterly surveys (yielding an
87% response rate), semi-structured interviews with 42
drivers and 12 supervisors, and operational performance
records from terminal management systems.

2.3.2.2, Statistical Analysis Framework

Paired t-tests for continuous variables, chi-square tests
for categorical variables, ANOVA for multi-group compa-
risons, and time-series regression with autocorrelation
adjustment for longitudinal data. All results include 95%
confidence intervals and p-values for assessing statistical
significance.

2.3.2.3. Data Quality Assurance

Automated validation checks, cross-source verification,
temporal consistency checks, and inter-rater reliability ass-
essment (Cohen's kappa > 0.85) ensured data integrity
throughout the evaluation period.

2.3.3. Comparative Analysis Methodology

To position SAM within the current state-of-the-art, a
comprehensive comparison was conducted with three
advanced scheduling approaches:

1. Wang et al.[13]: Constrained optimization approach
for container drayage with flexible work breaks

2. Ibrahim et al.[12]: Reinforcement learning model
for electric vehicle resource allocation

3. Ammann et al.[3]: Hybrid genetic algorithm for
driver routing and scheduling

2.3.3.1. Performance Metrics Framework

The framework includes standardized metrics for opera-
tional efficiency (response time, resource utilization, system
availability), user experience (satisfaction ratings, perceived
fairness, adoption rates), and adaptability measures (para-
meter adjustment capabilities, robustness to disruptions).

2.3.3.2. Implementation Comparison

Our phased 24-month deployment enabled progressive
adoption and continuous feedback integration using dynamic
adjustment (Eq. 10), contrasting with one-time transitions
[13], laboratory-controlled testing [12], and separate train-
ing environments [3].

2.3.4. Key Performance Indicators

2.3.4.1. Primary Metrics

Schedule response time (<5 min target), completion rate
(>90% target), adherence rate (>85% target), resource
utilization (>80% target), container handling improvement
(>20% target), assignment dispute reduction (>50% target),
and driver satisfaction (>4.0/5.0 target).

2.3.4.2. System Performance

System availability (>99% target), response time (<1 sec
target), peak load capacity (>1000 requests/hour target),
and data synchronization accuracy (>99% target).

2.3.5. Experimental Controls and Ethics

2.3.5.1. Control Mechanisms

A six-month pre-implementation baseline, 24-month
post-implementation monitoring, external factor controls
through multivariate regression, and phased deployment
serve as natural experimental controls.

2.3.5.2. Bias Mitigation

Complete population inclusion eliminated selection bias,
automated data collection minimized observer bias, anony-
mous feedback encouraged honest responses, and indepen-
dent statistical validation prevented confirmation bias.

2.3.5.3. Ethical Compliance

Institutional review board approval, informed consent
from all participants, voluntary participation with no penal-
ties, data anonymization with pseudonymous tracking, and
comprehensive data protection measures including encryp-
tion and access controls.

3. RESULTS

The evaluation of the SAM system at the RADES
container terminal followed the comprehensive methodo-
logy described in Section 2.4, documenting quantitative
improvements across key performance indicators and
qualitative assessments of system adoption over the 24-
month deployment period.

3.1. Operational Performance Improvements

The system demonstrated significant improvements in
key operational areas during the evaluation period. Table 1
presents the comprehensive operational performance met-
rics before and after the implementation of SAM.

These improvements demonstrate statistically signifi-
cant enhancements across all operational dimensions (p <
0.001 for all metrics). The reduction in schedule assignment
response time from 45 minutes to 3 minutes represents the
most dramatic improvement, enabling responsive adap-
tation to changing operational conditions through the dy-
namic adjustment mechanism described in Eq. (10).

The significant improvements resulted from specific
system capabilities implementing the mathematical frame-
work from Section 2.2:

3.1.1. Schedule Assignment Response Time (93%
improvement)

The optimized similarity computation algorithm (Egs.
1-3) and distributed processing architecture enabled near-

instantaneous neighbor selection and rapid schedule
generation.

3.1.2. Work Schedule Completion Rate (21%
improvement)
Improved skill-task matching through hybrid similarity

metrics enhanced schedule achievability, reducing assign-
ments beyond driver capabilities.
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3.1.3. Resource Utilization (28% improvement)

The constraint optimization framework (Egs. 6-9) mini-
mized idle time through better spatial assignment patterns
and workload distribution.

3.1.4. Container Handling Rate (31% improvement)

Combined effects of better skill-task matching, reduced
conflicts, and optimized assignments resulted in substantial
throughput improvements.

Fig. (2) illustrates the progressive enhancement in key
performance indicators over the 24-month evaluation period,
demonstrating sustained improvement rather than tempo-
rary gains.
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3.2. Conflict Resolution and Assignment Fairness

Quantitative analysis of assignment conflicts revealed
consistent improvement throughout the implementation
period. Comparing pre- and post-implementation periods
showed substantial reductions in operational conflicts:

3.2.1. Assignment Disputes

Decreased from 89 incidents per month to 32, repre-
senting a 64% reduction (95% CI: £5.2%, p<0.001).

3.2.2. Conflict Resolution Time

Reduced from 2.4 hours to 0.5 hours, an improvement
of 79% (95% CI: £4.8%, p<0.001).

Table 1. Operational performance metrics before and after SAM implementation.

Metric Pre-implementation | Post-implementation | Improvement Confidence Interval p-value

Schedule Assignment Response Time 45 min 3 min 93% +1.5% p<0.001

Work Schedule Completion Rate 76% 92% 21% +2.3% p<0.001

Schedule Adherence 71% 91% 28% +2.1% p<0.001

Resource Utilization 67% 86% 28% +3.2% p<0.001

Container Handling Rate 18.3/hour 24.0/hour 31% +2.8% p<0.001

Scheduling Administrative Time 4.2 hours/day 0.8 hours/day 81% +3.5% p<0.001
Full Deployment Parameter Optimization
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Fig. (2). Operational performance metrics over 24-month deployment.
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Table 2. Comparative analysis of advanced scheduling algorithms.

13

Feature SAM System Wang et al. [13] Ibrahim et al. [12] Ammann et al. [3]
Algorithm Basis Hybrid collaborative filtering with seniority metrics | Constrained optimization | Reinforcement learning [Hybrid genetic algorithm
Response Time 3 minutes 15 minutes 8 minutes 12 minutes

Resource Utilization 86% 83% 71% 79%
Driver Satisfaction 85% positive Not measured 62% positive 71% positive

Adaptability Dynamic threshold adjustment

Static parameters

Learning-based adaptation

Manual reconfiguration

Conflict Resolution Automated with fairness metrics

Semi-automated

Rule-based

Manual intervention

Implementation Scope Multi-terminal validated deployment Single terminal theoretical| Simulated environment Limited field testing
Table 3. User adoption and satisfaction metrics by quarter.
Metric Q1 Q2 Q4 Q8 Trend
System Adoption Rate 45% 67% 86% 94% +49 points
User Satisfaction Score (1-5 scale) 3.2 3.6 4 4.3 +1.1 points
Feature Utilization Rate 38% 52% 74% 87% +49 points
Preference Submission Rate 31% 58% 76% 82% +51 points
System Trust Index 2.8 3.5 4.1 4.4 +1.6 points

3.2.3. Fair Distribution Index

Improved from 0.65 to 0.89 on a normalized scale (95%
CI: £0.03, p<0.001).

3.2.4. Workload Variance

Decreased by 42% among drivers (95% CI: *£3.7%,
p<0.001).

Analysis of assignment patterns by driver seniority reve-
aled successful workload balancing across experience
levels. Before implementation, drivers with 5 or more years
of experience received 62% of premium assignments, des-
pite representing only 35% of the workforce. Post-imple-
mentation, this proportion adjusted to 41%, more closely
aligning with their representation while maintaining skill-
matching requirements.

3.3. Comparative Analysis with Advanced Scheduling
Algorithms

To position SAM within the current state of the art, a
comprehensive comparison was conducted with the three
advanced scheduling approaches described in Section 2.4.3.
Table 2 presents performance metrics across multiple
dimensions.

SAM demonstrates superior performance across multiple
dimensions. While Wang et al. [13] achieved similar theore-
tical optimization rates (within 2% of SAM), their approach
required significantly longer computation times (15 vs. 3
minutes) and lacked adaptability to changing conditions.
Ibrahim et al. [12] demonstrated 15% lower resource utili-
zation in a real-world implementation due to the limited
incorporation of human factors.

The performance improvements observed in our system
significantly exceed those reported in comparable studies.
Wang et al. [13] reported a 12% improvement in utilization,
compared to our 28% improvement. Similarly, Ibrahim et al.
[12] achieved a 19% reduction in scheduling time, substan-
tially less than our 93% improvement. These differences can
be attributed to:

1. Integration of domain expertise through seniority-
based similarity metrics (Eq. 2), providing context-specific

optimization.

2. Real-time feedback mechanisms enabling conti-
nuous performance improvement via dynamic adjustment

(Eq. 10).

3. Comprehensive consideration of both operational
metrics and human factors creates balanced optimization.

3.4. System Performance and Technical Metrics

Technical performance metrics demonstrated robust
system reliability throughout the evaluation period:

3.4.1. Average Response Time

200ms for standard requests, 1.2 seconds for complex
optimization scenarios

3.4.2. System Availability

99.9% uptime over 24 months, with no unplanned
outages exceeding 15 minutes

3.4.3. Peak Load Handling

Successfully processed 1,200 requests per hour during
maximum operational periods

3.4.4. Data Synchronization Accuracy

99.7% across all terminal systems

3.4.5. Recovery

Time

Average of 45 seconds to restore service after
intermittent issues

These metrics consistently exceeded the performance
specifications established during system design, demonstra-
ting the robustness of the three-tier architecture described
in Section 2.3.1. System performance remained stable
during peak operational periods, ensuring consistent ser-
vice quality regardless of terminal activity levels.
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3.5. User Adoption and Satisfaction Analysis

User adoption metrics showed progressive improvement
throughout the implementation period. Table 3 presents the
evolution of key adoption indicators over the 24-month eva-
luation period.

Qualitative feedback collected through structured inter-
views revealed consistent themes:
3.5.1. Transparency

87% of drivers cited improved transparency in assign-
ment processes compared to 23% under the previous system
3.5.2. Fairness

82% reported improved assignment fairness, with expe-
rienced drivers initially skeptical but showing increased
acceptance over time
3.5.3. Responsiveness

91% of supervisors noted improved responsiveness to
operational changes
3.5.4. Workload Balance

79% of drivers reported more consistent workload
distribution

Training Program Enhanced
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Fig. (3) illustrates adoption trajectories across different
user groups throughout the deployment period.

By month 24, adoption rates converged to high levels
across all groups, with even the initially resistant senior
driver cohort reaching 89% acceptance. The willingness to
recommend the system to other terminals reached 85%
across all user groups, indicating genuine acceptance
beyond compliance.

3.6. Economic Impact Assessment

Implementation of SAM yielded measurable economic
benefits across multiple operational dimensions:
3.6.1. Operational Cost Reduction

23% decrease in administrative overhead, equivalent to
approximately $175,000 annually.
3.6.2. Time Efficiency Improvement

34% reduction in schedule preparation time, freeing
approximately 870 person-hours annually.
3.6.3. Resource Utilization Increase

28% improvement in driver allocation efficiency, trans-
lating to approximately $420,000 in annual productivity
gains.

@ Ssupervisors
Junior Drivers
Senior Drivers

@ Maintenance Staff

0%

16 20 24

Months Since Implementation

Fig. (3). System adoption rates by user group.
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Fig. (4). Container handling efficiency by terminal zone.

3.6.4. Error Reduction

76% decrease in scheduling errors, reducing rework
costs by approximately $230,000 annually

The combined economic impact represents approxi-
mately $825,000 in annual operational improvements for
the RADES terminal, achieving a return on investment
within 7 months of full deployment.

3.7. Long-term Performance Sustainability

Extended monitoring revealed sustained improvements
throughout the 24-month evaluation period:
3.7.1. Container Handling Efficiency

31% increase maintained consistently, from 18.3 to 24.0
containers per hour.

3.7.2. Idle Time Reduction

45% reduction sustained, from 24 minutes to 13
minutes average between assignments.

3.7.3. On-time Delivery Performance
28% improvement maintained, from 76% to 97%.

3.7.4. Overtime Requirements
52% decrease sustained, from 620 to 298 hours monthly.

Fig. (4) presents the improvements in container hand-
ling efficiency across different terminal zones, demon-
strating consistent performance gains.
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These sustained improvements demonstrate that bene-
fits extend beyond initial implementation gains, providing
lasting operational enhancements. Terminal capacity effec-
tively increased by 31% without additional equipment in-
vestment, representing significant capital avoidance value.

4. DISCUSSION

The implementation and evaluation of SAM at the
RADES container terminal revealed several important in-
sights about the application of recommender systems in
industrial settings. This section presents key findings, com-
pares the results with existing approaches, addresses study
limitations, and discusses the practical implications for
container terminal operations.

4.1. Key Findings and Implications

4.1.1. Performance-Fairness Synergy

A key finding emerged in the relationship between ope-
rational efficiency and fairness in schedule assignments.
While conventional wisdom suggests trade-offs between
these objectives, SAM demonstrated that fairness and effi-
ciency can be synergistically optimized. The system achi-
eved 28% improvement in overall terminal efficiency while
maintaining equitable assignment distribution, challenging
traditional assumptions about competing operational
priorities.

Analysis of longitudinal performance data revealed an
unexpected pattern: as assignment fairness improved, over-
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all terminal efficiency also improved. This correlation app-
ears to be driven by two factors: reduced conflicts and
reduced disputes, which minimize operational disruptions,
and broader skill development across the workforce, enhan-
cing organizational resilience. The 64% reduction in assign-
ment disputes directly contributed to operational improve-
ments by eliminating an average of 1.8 hours of lost
productivity per incident.

This synergistic relationship contrasts with findings
reported by Wang et al. [13], who observed a negative cor-
relation between fairness measures and efficiency metrics
in their constrained optimization approach. Their system
achieved either high efficiency (83% resource utilization)
with low fairness ratings (52% perceived fairness) or im-
proved fairness (78%) at the expense of reduced efficiency
(71% utilization). Our ability to improve both dimensions
simultaneously (86% utilization with 85% fairness) high-
lights the advantage of our hybrid similarity approach over
pure constraint-based optimization.

4.1.2. System Adoption and Organizational Dynamics

Initial deployment encountered significant resistance
from experienced drivers who had previously enjoyed pre-
ferential treatment under traditional scheduling systems.
This resistance manifested in reluctance to use the new
system and skepticism about its fairness. However, this
initial reaction validated the system's effectiveness in
eliminating historical biases rather than contradicting our
objectives.

The progressive improvement in adoption metrics—from
45% in the first quarter to 94% by the eighth quarter—
demonstrates successful navigation of organizational
change challenges. Three factors proved critical in over-
coming initial resistance: transparent algorithm operation
with clear assignment rationales, continuous refinement
based on driver feedback, and demonstrable fairness in
outcome distribution, supported by data-driven evidence
shared with stakeholders.

The system's ability to maintain satisfaction among
experienced drivers while significantly improving satis-
faction among junior personnel represents a notable achi-
evement in change management. By year two, the 30% re-
duction in recorded conflicts demonstrated successful reso-
lution of initial skepticism through consistent and trans-
parent operation.

4.1.3. Scalability and Adaptive Performance

The system's deployment revealed interesting patterns
in adaptation across different terminal areas. High-traffic
zones showed faster improvement in efficiency metrics
(35% increase) compared to lower-traffic areas (22% inc-
rease), highlighting the importance of context-sensitive
parameter adjustment in recommendation algorithms.

Implementing zone-specific similarity thresholds imp-
roved performance across all areas, demonstrating the
value of contextual adaptation in recommender systems
deployed across heterogeneous operational environments.
The dynamic adjustment mechanism described in Eq. (10)
proved essential for maintaining performance during var-
ying operational conditions, with the system successfully
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adapting threshold parameters based on real-time feed-
back.

The system maintained performance during peak opera-
tional periods, when request volumes exceeded 1,200 per
hour, validating its scalability for enterprise-level deploy-
ment. Integration with existing terminal management sys-
tems achieved 99.7% data synchronization accuracy, dem-
onstrating adaptability to complex operational environ-
ments.

4.2. Comparison with Existing Approaches

4.2.1. Algorithmic Performance Comparison

Compared to traditional manual scheduling systems,
SAM shows significant improvements in both efficiency and
fairness metrics. When compared to other automated sche-
duling systems, several important differences emerge that
highlight the advantages of our hybrid collaborative filte-
ring approach.

While Ammann et al. [3] reported higher theoretical
optimization rates in simulation studies (89% resource
utilization versus our 86%), SAM achieved better real-world
performance due to its adaptive feedback mechanisms and
consideration of human factors. Their deployment in limited
field testing showed actual utilization of only 79% due to
implementation challenges not encountered in simulation,
demonstrating the importance of comprehensive real-world
validation.

The dynamic threshold adjustment mechanism in SAM
provides superior adaptability compared to the static
optimization approaches described by Wang et al. [13].
Their system required manual reconfiguration when opera-
tional conditions changed significantly, leading to periodic
performance degradation that our system avoided through
continuous parameter adjustment using Eq. (10).

Ibrahim et al. [12] attempted to address adaptability
through the use of reinforcement learning. Still, they en-
countered challenges in balancing competing objectives,
resulting in optimization biases that favored either effi-
ciency (at the expense of driver satisfaction) or satisfaction
(at the expense of operational metrics). The hybrid app-
roach executed in this study, which combines collaborative
filtering with operational constraints, successfully balances
these competing demands.

4.2.2. Implementation Methodology Advantages

The phased implementation approach in this study
differed significantly from existing deployments, contri-
buting to superior adoption outcomes. Wang et al. [13] imp-
lemented their system as a one-time transition with minimal
user training, resulting in initial resistance affecting 65% of
users. The phased approach maintained user satisfaction
above 75% throughout the deployment period.

Ibrahim et al. [12] deployed their system in controlled
laboratory environments before limited field testing, where-
as our implementation occurred within active terminal ope-
rations from the outset. This approach enabled validation of
the mathematical framework under real-world constraints
while addressing practical implementation challenges
immediately.
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Ammann et al. [3] required separate training and ope-
rational environments during implementation, whereas our
architecture supported parallel operations during transition
periods, maintaining continuous service while implementing
the complete mathematical framework. This approach achi-
eved 99.9% availability compared to the 96.7% reported by
Ibrahim et al. [12], which directly impacts operational
reliability.

4.2.3. Methodological Evolution from Previous
Approaches

This research is built upon previous work by the authors
in container terminal optimization. Earlier studies add-
ressed straddle carrier routing optimization [18, 19] using
traditional operations research approaches, while recent
work explored dynamic container relocation [20] using algo-
rithmic optimization. The current SAM system represents a
methodological evolution by integrating human factors with
operational optimization through collaborative filtering
techniques, addressing workforce scheduling challenges
that were not fully considered in equipment-focused optimi-
zation approaches.

4.3. Study Limitations and Constraints

4.3.1. Technical Limitations

Several limitations of the current implementation war-
rant acknowledgment and future considerations:

4.3.1.1. Real-time Constraints

While the system achieves sub-second response times
for standard requests, complex multi-driver reassignments
during peak hours can experience delays of up to 3 seconds.
This limitation becomes apparent during major operational
disruptions that require comprehensive rescheduling, al-
though performance remains within acceptable operational
parameters.

4.3.1.2. Data Quality Dependencies

The system's effectiveness relies heavily on accurate
historical data for similarity computations (Egs. 1-3) and
performance score (Eq. 3). Missing or incorrect perfor-
mance records can impact recommendation quality, neces-
sitating regular data validation procedures and careful
handling of new drivers with limited performance history.

4.3.1.3. Environmental Factors

The current mathematical framework does not fully
account for external factors such as weather conditions,
equipment maintenance schedules, or seasonal variations
that can affect optimal assignment decisions. Future ite-
rations could incorporate these variables for more comp-
rehensive optimization.

The real-time constraints observed align with the
findings of Ibrahim et al. [12], who reported similar perfor-
mance degradation during peak operational periods. How-
ever, our system maintained acceptable performance (with
response times below 3 seconds) even under maximum load,
whereas Ibrahim reported response times exceeding 15
seconds under comparable conditions.

4.4. Generalizability Considerations

The implementation at the RADES terminal represents a
specific operational context that may limit direct genera-
lizability to other container terminals. Key contextual fac-
tors include workforce composition (250 drivers with
specific experience distributions), terminal layout and equ-
ipment configuration, and operational procedures specific
to the Mediterranean shipping routes served by RADES.

Parameter calibration, particularly for the similarity
thresholds (y) and experience gap tolerance (8), should be
adjusted based on specific terminal characteristics. The
sensitivity analysis condudcted in this study revealed opti-
mal performance within defined ranges; however, these
ranges may vary for terminals with different operational
characteristics, training programs, or equipment types.

The seniority-based similarity measures (Eq. 2) assume
correlation between experience and performance, which
may not hold in terminals undergoing rapid technological
changes or with inadequate training programs. Implemen-
tation in other contexts should validate these assumptions
through statistical analysis before deployment.

4.5. Practical Implications and Recommendations

4.5.1. Implementation Best Practices

The implementation of SAM suggests several best
practices for deploying recommender systems in industrial
environments:

4.5.1.1. Phased Deployment Strategy

The incremental rollout approach proved crucial for
minimizing operational disruption while allowing system
refinement based on user feedback. We recommend star-
ting with pilot groups representing 10-15% of the workforce
before expanding to full deployment.

4.5.1.2. Transparent Operation

Providing clear visibility into assignment rationale
significantly improved user acceptance compared to “black
box” approaches. Users need to understand how decisions
are made to trust and effectively utilize the system.

4.5.1.3. Balanced Optimization

Explicitly addressing both efficiency and fairness in
system design helps align organizational values with ope-
rational requirements, thereby enhancing overall system
performance. This study reveals that these objectives can
be synergistic rather than competing.

4.5.1.4. Continuous Adaptation

The dynamic threshold adjustment mechanism (Eq. 10)
enabled ongoing system improvement without manual inter-
vention. It is recommended to implement automated para-
meter optimization based on operational feedback rather
than static configurations.

4.6. Organizational Change Management

The successful adoption of SAM required comprehen-
sive attention to organizational dynamics beyond technical
implementation. Key success factors included:
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4.6.1. Stakeholder Engagement

Early and continuous engagement with all user groups,
particularly experienced drivers who might perceive chan-
ges as threatening, proved essential for successful adop-
tion. Regular feedback sessions and transparent communi-
cation about system benefits helped overcome initial
resistance.

4.6.2. Training and Support

Comprehensive training programs tailored to different
user roles ensured effective system utilization. Ongoing
support during the transition period maintained user
confidence and system effectiveness.

4.6.3. Performance Transparency

Sharing system performance metrics and individual
performance data helped build trust and demonstrate fair-
ness. Users could see how their assignments compared to
those of their peers and understand the rationale behind
specific decisions.

4.7. Broader Industry Applications

The success of SAM suggests potential applications
beyond container terminals. The core approach—combining
collaborative filtering with domain-specific constraints—
could be adapted for other transportation domains, manu-
facturing operations, and service industries with complex
human resource allocation challenges.

Key adaptation requirements include identifying appro-
priate similarity metrics for the specific domain, defining
relevant operational constraints, and establishing suitable
performance measures. The mathematical framework
(Egs. 1-10) provides a generalizable foundation that can be
customized for different operational contexts.

4.8. Future Research Directions

4.8.1. Technical Enhancements

Several technical improvements could enhance SAM's
capabilities:

4.8.1.1. Predictive Performance Modeling

Integration of machine learning techniques for pre-
dictive performance modeling would enable anticipatory
scheduling rather than purely reactive assignment. This
could incorporate weather forecasts, equipment mainte-
nance schedules, and seasonal traffic patterns into assign-
ment decisions.

4.8.1.2. Multi-Terminal Coordination

Expanding to multi-terminal coordination would enable
port-wide optimization, addressing broader logistics chal-
lenges that extend beyond individual terminal boundaries.
This would require extensions to the mathematical frame-
work to handle inter-terminal resource sharing and coor-
dination constraints.

4.8.1.3. Enhanced Explainable AI

The Development of more sophisticated explanation
mechanisms would increase system transparency and user
trust. Users could receive detailed rationales for assign-
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ments, including contributing factors and alternative
options considered.

4.9. Theoretical Developments
Future research opportunities include:

4.9.1. Advanced Fairness Metrics

The development of fairness metrics that incorporate
career development trajectories would enable long-term
workforce development considerations beyond immediate
assignment equity.

4.9.2. Multi-Objective Optimization

Enhanced multi-objective optimization approaches could
better balance competing operational priorities while main-
taining computational efficiency for real-time applications.

4.9.3. Knowledge Transfer Modeling

Formal models of knowledge transfer and skill develop-
ment within scheduling frameworks would optimize assign-
ments for both immediate performance and long-term
capability building.

SUMMARY

This research advances the field of maritime logistics by
developing and implementing the Straddle Carrier Assign-
ment Model (SAM). This novel collaborative filtering recom-
mender system transforms traditional scheduling practices
in container terminals. Our work bridges a critical gap
between theoretical recommender systems and practical
terminal operations, addressing fundamental challenges in
maritime logistics through intelligent automation and data-
driven decision-making.

RESEARCH CONTRIBUTIONS AND ACHIEVEMENTS

Technical Innovations

The core innovation of SAM lies in its application of
collaborative filtering techniques to container terminal ope-
rations, achieved through the unique integration of opera-
tional constraints with recommendation algorithms. The
hybrid similarity metrics used in this study combine rating-
based and seniority-based parameters through Egs. (1-3)
achieved remarkable improvements in both efficiency (93%
reduction in response time) and fairness (64% reduction in
assignment disputes). The mathematical framework suc-
cessfully demonstrated that sophisticated algorithms could
meet the demanding requirements of real-world terminal
operations.

The dynamic threshold adjustment mechanism des-
cribed in Eq. (10) represents a significant theoretical cont-
ribution, extending collaborative filtering techniques into
domains with complex operational constraints. This app-
roach enabled a 31% increase in container handling effi-
ciency while maintaining an equitable workload distri-
bution, validating both the theoretical foundations and the
practical utility of our approach.

The system's ability to process over 1,000 requests per
hour with 99.9% availability demonstrates that intelligent
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scheduling systems can substantially impact operational
performance across multiple dimensions. The three-tier
architecture described in Section 2.3 proved robust under
demanding operational conditions while maintaining real-
time performance requirements.

Empirical Validation and Operational Impact

The successful implementation at the RADES container
terminal demonstrates significant operational improve-
ments across key performance indicators. The combined
economic impact of approximately $825,000 in annual
operational improvements (through reduced administrative
overhead, improved resource allocation, and decreased
scheduling errors) confirms the business case for advanced
scheduling technologies in maritime logistics.

Beyond direct performance improvements, the system
fostered significant organizational benefits, including
improved communication between management and drivers
(a 47% improvement in perceived communication quality)
and accelerated skill development among junior drivers (a
23% reduction in competency certification timelines). It
enhanced terminal resilience during personnel changes
(28% fewer operational disruptions during staff transitions).

The 24-month longitudinal evaluation provided robust
evidence that benefits extend beyond initial implementation
gains, with sustained improvements in container handling
efficiency (a 31% increase), idle time reduction (a 45%
decrease), and on-time delivery performance (a 28% impr-
ovement). This sustained performance validates the effec-
tiveness of both the mathematical framework and imple-
mentation methodology in real-world environments.

Methodological Contributions

Our phased implementation approach, combining tech-
nical innovation with systematic change management, pro-
vides a valuable methodological blueprint for similar dep-
loyments in industrial settings. The progression from pilot
testing through controlled expansion to full deployment
enabled continuous refinement while maintaining opera-
tional continuity—a critical factor in environments where
service disruption carries significant economic costs.

The comprehensive evaluation methodology, combining
quantitative performance metrics with qualitative user feed-
back, establishes a robust framework for assessing sche-
duling technologies in operational contexts. This methodo-
logy revealed important insights into the interplay between
technical performance and organizational adoption, demon-
strating that successful implementation requires attention
to both dimensions.

The demonstration that fairness and efficiency can be
synergistically optimized, rather than traded off against
each other, represents an important methodological insight
with implications that extend beyond scheduling systems.
This finding challenges conventional assumptions about
competing operational objectives and suggests broader
principles for technological innovation in industrial settings.

PRACTICAL
IMPACT

IMPLICATIONS AND INDUSTRY

Container Terminal Operations

The success of SAM has direct implications for con-
tainer terminal operations worldwide. The core innovation—
applying collaborative filtering with domain-specific cons-
traints—demonstrates a generalizable approach that could
transform scheduling in other maritime logistics contexts.
Terminals facing similar challenges, such as manual sche-
duling processes, workload distribution inequities, and
operational inefficiencies, can adapt our approach to their
specific operational contexts.

The synergistic relationship between fairness and effi-
ciency observed in our implementation challenges conven-
tional operational wisdom, suggesting that well-designed
recommender systems can simultaneously optimize see-
mingly competing objectives. This finding has relevance for
terminal operators who have traditionally viewed equity
concerns as constraints on operational performance rather
than complementary dimensions.

The methodological framework established through this
research provides a template for technology implemen-
tation in complex operational environments where both
human and technical factors significantly influence out-
comes. The successful navigation of organizational resis-
tance through transparent operation and demonstrable
fairness offers valuable lessons for industrial automation
initiatives.

Broader Transportation and Logistics Applications

The demonstrated effectiveness of collaborative filtering
techniques in container terminal environments suggests
potential applications across various transportation do-
mains, manufacturing operations, and service industries
that face complex human resource allocation challenges.
The mathematical framework (Egs. 1-10) provides a foun-
dation that can be adapted to different operational contexts
while maintaining the core benefits of intelligent auto-
mation and fairness optimization.

Key adaptation requirements include identifying app-
ropriate similarity metrics for specific domains, defining
relevant operational constraints, and establishing suitable
performance measures. The success at RADES demon-
strates that such adaptations can yield substantial opera-
tional benefits when properly implemented with attention to
organizational dynamics.

STUDY LIMITATIONS AND CONSTRAINTS

While the SAM system achieved significant success,
several limitations warrant acknowledgment for future imp-
lementations. The current mathematical framework does
not fully account for external factors such as weather con-
ditions, equipment maintenance schedules, or seasonal
variations that can affect optimal assignment decisions.
Additionally, the computational complexity of the optimi-
zation algorithm increases non-linearly with the number of
drivers and tasks, potentially limiting scalability for very
large terminals without algorithm refinements.
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The implementation at RADES represents a specific ope-
rational context that may limit direct generalizability to
other container terminals. Parameter calibration, particu-
larly for similarity thresholds and experience gap tolerance,
should be adjusted based on specific terminal character-
istics, including workforce composition, equipment confi-
guration, and operational procedures.

The seniority-based similarity measures assume a cor-
relation between experience and performance, which may
not hold in terminals undergoing rapid technological
changes or with different training program structures.
Future implementations should validate these assumptions
through statistical analysis before deployment and adjust
the mathematical framework accordingly.

FUTURE RESEARCH DIRECTIONS

Technical Enhancements

Building on the foundation established by SAM, several
promising directions for future research emerge. The
integration of machine learning techniques for predictive
performance modeling would enable anticipatory sche-
duling, rather than purely reactive assignment, by incor-
porating weather forecasts, equipment maintenance sche-
dules, and seasonal traffic patterns into the mathematical
framework.

Expansion to multi-terminal coordination would enable
port-wide optimization, addressing broader logistics chal-
lenges beyond individual terminal boundaries. This would
require extensions to the constraint optimization framework
(Egs. 6-9) to handle inter-terminal resource sharing and
coordination requirements while maintaining computational
efficiency.

The development of enhanced explainable Al compo-
nents would increase system transparency and potentially
accelerate user adoption in new implementations. Users
could receive detailed rationales for assignments, including
contributing factors, alternative options considered, and
performance implications of different choices.

Theoretical Developments

Advanced fairness metrics incorporating career deve-
lopment trajectories would enable long-term workforce
development considerations beyond immediate assignment
equity. This could include formal models of skill acquisition,
mentoring relationships, and career progression within the
scheduling optimization framework.

Multi-objective optimization approaches, balancing com-
peting operational priorities, would create more nuanced
scheduling solutions while maintaining computational effi-
ciency for real-time applications. This could involve sophis-
ticated weighting mechanisms that adapt to changing ope-
rational priorities and stakeholder preferences.

Models of knowledge transfer and skill development
within scheduling frameworks would formalize the relation-
ship between assignment patterns and workforce capability
development, enabling optimization for both immediate
performance and long-term organizational capability
building.
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Implementation Research

Comparative studies across different terminal types,
geographical locations, and operational scales would en-
hance understanding of generalizability and adaptation
requirements. Such studies could validate parameter sensi-
tivity analyses and develop guidelines for context-specific
implementations.

Investigating integration approaches with emerging
technologies, including autonomous equipment, IoT sensors,
and blockchain-based logistics platforms, would position
recommender systems within broader digital transformation
initiatives in maritime logistics.

Research into organizational change management stra-
tegies specifically for industrial Al implementations would
build on our experience at RADES to develop more effective
adoption frameworks for complex operational environ-
ments.

CONCLUDING REMARKS

In conclusion, SAM represents a significant advance-
ment in both the theoretical understanding of recommender
systems in operational contexts and the practical implemen-
tation of intelligent scheduling in maritime logistics. By
addressing the fundamental challenges of schedule optimi-
zation in container terminals, this research contributes to
the growing body of work that applies artificial intelligence
to transportation management, delivering tangible opera-
tional benefits in real-world settings.

The convergence of recommendation technologies with
domain-specific operational constraints, as demonstrated in
this research, opens new possibilities for intelligent auto-
mation across various industrial domains. As transportation
and logistics operations face increasing pressure to opti-
mize performance while managing complex human factors,
approaches like SAM offer a pathway to balance competing
priorities through sophisticated data-driven decision
support systems.

The demonstrated synergy between fairness and effi-
ciency challenges traditional assumptions about operational
trade-offs, suggesting that well-designed technological solu-
tions can advance multiple organizational objectives simul-
taneously. This finding has implications beyond scheduling
systems, offering insights for industrial automation initia-
tives that must balance technical optimization with human
factors considerations.

The successful 24-month implementation at the RADES
container terminal validates the practical viability of colla-
borative filtering approaches in complex operational envi-
ronments while establishing a methodological foundation
for future developments. The substantial operational imp-
rovements achieved—including a 31% increase in container
handling efficiency, a 64% reduction in assignment
disputes, and $825,000 in annual economic benefits—
demonstrate that advanced scheduling technologies can
deliver transformative value in maritime logistics
operations.

As the maritime industry continues its digital transfor-
mation journey, the principles and methodologies estab-
lished through this research provide a foundation for
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intelligent automation initiatives that respect both opera-
tional requirements and human factors considerations. The
success of the SAM system establishes recommender sys-
tems as viable solutions for complex operational challenges,
while pointing toward future developments that could
further enhance the efficiency, fairness, and sustainability
of global logistics operations.
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